Package: ScaleInMultilayerNetworks (via r-universe)

October 21, 2024

Title Package Accompanying: The Problem And Promise Of Scale In Multilayer Animal Social Networks.

Version 0.1.1

Description Scale remains a foundational concept in ecology. Spatial scale, for instance, has become a central consideration in the way we understand landscape ecology and animal space use. Meanwhile, scale-dependent social processes can range from fine-scale interactions to co-occurrence and overlapping home ranges. Furthermore, sociality can vary within and across seasons. Multilayer networks promise the explicit integration of the social, spatial and, temporal contexts. Given the complex interplay of sociality and animal space use in heterogeneous landscapes, there remains an important gap in our understanding of the influence of scale on animal social networks. Using an empirical case study, we discuss ways of considering social, spatial and, temporal scale in the context of multilayer caribou social networks. Effective integration of social and spatial processes, including biologically meaningful scales, within the context of animal social networks is an emerging area of research. We incorporate perspectives that link the social environment to spatial processes across scales in a multilayer context.

License GPL-3 | file LICENSE

Encoding UTF-8 LazyData true

Imports data.table, spatsoc, igraph, asnipe

RoxygenNote 7.1.1

Repository https://robitalec.r-universe.dev

RemoteUrl https://github.com/robitalec/ScaleInMultilayerNetworks

RemoteRef HEAD

RemoteSha 3f0bd569874f0fb4aa92018a014640ea6f9b4f87

2 edge_overlap_mat

Contents

edge_overlap																	
edge_overlap_i	mat .																
layer_neighbor																	
layer_relevance	e																
layer_strength																	
list_edges																	
list_gbi																	
list_graphs																	
list_nets																	
multi_degree																	
property_matri	х.																
shear_xy																	

edge_overlap

Edge overlap

Description

Edge overlap

Usage

edge_overlap(edges)

Arguments

 ${\sf graphLs}$

edge_overlap_mat

Edge overlap matrix

Description

Layer A vs Layer B, count overlap

Usage

```
edge_overlap_mat(edges)
```

Arguments

edges

layer_neighbors 3

layer_neighbors

Neighbourhood

Description

Number of neighbors adjacent to each actor. Calculated excluding self from set of neighbors.

Usage

```
layer_neighbors(DT, id, splitBy = NULL)
```

Arguments

DT a data.table with column "group" generated by spatsoc::group_pts
id
splitBy the column which defines the layers of the network

Value

The input DT with additional column "neigh" and optionally "splitNeigh" if a column was provided for the 'splitBy' argument.

Examples

4 layer_strength

layer_relevance

Relevance

Description

Proportion of neighbours present on each layer.

Usage

```
layer_relevance(DT, id, splitBy)
```

Arguments

DT

id

splitBy

var

References

Berlingerio, Michele, et al. "Foundations of multidimensional network analysis." 2011 international conference on advances in social networks analysis and mining. IEEE, 2011.

layer_strength

Calculate graph strength for each graph in a list

Description

Calculate graph strength for each graph in a list

Usage

```
layer_strength(graphLs)
```

Arguments

graphLs

list_edges 5

list_edges

Edge lists

Description

Edge lists

Usage

```
list_edges(graphLs)
```

Arguments

edgeLs

 $list_gbi$

GBI

Description

GBI

Usage

```
list_gbi(DT, id, splitBy, group = "group")
```

Arguments

 $\mathsf{D}\mathsf{T}$

id

 ${\tt splitBy}$

group

splitList

6 list_nets

list_graphs

Graphs

Description

Graphs

Usage

```
list_graphs(netLs, mode = "undirected", diag = FALSE, weighted = TRUE)
```

Arguments

netLs mode

diag

 ${\tt weighted}$

list_nets

Networks

Description

Networks

Usage

```
list_nets(gbiLs, format = "GBI", ai = "SRI")
```

Arguments

gbiLs

format

ai

multi_degree 7

multi_degree

Multidegree

Description

Multidegree

Usage

```
multi_degree(DT, degree, id, splitBy)
```

Arguments

DT

degree

id

Value

Column added named multideg

property_matrix

Property Matrix

Description

Property Matrix

Usage

```
property_matrix(DT, id, metric, by, layer = "layer")
```

Arguments

DT

id

metric

by

layer

References

Bródka P, Chmiel A, Magnani M, Ragozini G. 2018 Quantifying layer similarity in multiplex networks: a systematic study. R.Soc.opensci. 5:171747. http://dx.doi.org/10.1098/rsos.171747

shear_xy

shear_xy

Shear XY for stacked plotting Thanks to
[@rafapereirabr](https://github.com/rafapereirabr) for this gist
(https://gist.github.com/rafapereirabr/97a7c92d40f91cd20a10e8e0165a0aef)
and Barry Rowlingson for the original SO answer
(http://gis.stackexchange.com/questions/189490/plot-tilted-map-in-r)

Description

Shear XY for stacked plotting Thanks to [@rafapereirabr](https://github.com/rafapereirabr) for this gist (https://gist.github.com/rafapereirabr/97a7c92d40f91cd20a10e8e0165a0aef) and Barry Rowlingson for the original SO answer (http://gis.stackexchange.com/questions/189490/plot-tilted-map-in-r)

Usage

```
shear_xy(DT, coordcols, shearmatrix = matrix(c(2, 1.2, 0, 1), 2, 2))
```

Arguments

DT

coordcols length 2

shearmatrix

Index

```
edge_overlap, 2
edge_overlap_mat, 2

layer_neighbors, 3
layer_relevance, 4
layer_strength, 4
list_edges, 5
list_gbi, 5
list_graphs, 6
list_nets, 6

multi_degree, 7
property_matrix, 7

shear_xy, 8
```